Abstract

Gas-phase H/D exchange and density functional theory study of the Asp and Glu side-chain carboxylic group intrinsic reactivity is reported. H/D exchange site specific treatment and some additional theoretical calculations showed that a side-chain carboxylic group may initiate proton transfer along with bond formation to one of its oxygens, i.e., possibility to initiate selective of cleavage peptide bond ("aspartic acid effect"). That finding is used to select aspartic acid cleavage mechanisms (side-chain proton transfer either to backbone carbonyl or to amide nitrogen) for further computational study. B3LYP/6-31G(d) and G3(MP2)//B3LYP potential energy profiles of both mechanisms on a model system CH3CO-Asp-NHCH3 were constructed. Although energy employed in low-energy collision induced dissociation suffices for both mechanisms thresholds, energy transferred to specific modes suggests a complex one-step mechanism of proton transfer (from the side-chain carboxylic group to the backbone amide group), bond formation (between deprotonated carboxylic group and carbon atom of the backbone carbonyl), and peptide bond cleavage as favorable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.