Abstract
The two most active disulfide bond isomers of the analgesic αO-conotoxin GeXIVA, namely GeXIVA[1, 2] and GeXIVA[1, 4], were subjected to Asp-scanning mutagenesis to determine the key amino acid residues for activity at the rat α9α10 nicotinic acetylcholine receptor (nAChR). These studies revealed the key role of arginine residues for the activity of GeXIVA isomers towards the α9α10 nAChR. Based on these results, additional analogues with 2–4 mutations were designed and tested. The analogues [T1A,D14A,V28K]GeXIVA[1, 2] and [D14A,I23A,V28K]GeXIVA[1, 4] were developed and showed sub-nanomolar activity for the α9α10 nAChR with IC50 values of 0.79 and 0.38 nM. The latter analogue had exceptional selectivity for the α9α10 receptor subtype over other nAChR subtypes and can be considered as a drug candidate for further development. Molecular dynamics of receptor-ligand complexes allowed us to make deductions about the possible causes of increases in the affinity of key GeXIVA[1, 4] mutants for the α9α10 nAChR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.