Abstract
The gastrointestinal tract (GIT) of healthy cattle is the main reservoir of enterohaemorrhagic Escherichia coli (EHEC). Therefore, it is crucial to better understand the physiology of EHEC in the bovine GIT. In this study, we demonstrate that aspartate present in bovine small intestine content (BSIC), was exhausted after incubation of the reference EHEC strain EDL933 but was poorly assimilated by the endogenous microbiota. Furthermore, the bovine commensal E. coli strain BG1 appeared less efficient than EDL933 in aspartate assimilation suggesting a competitive ability of EHEC to assimilate this amino acid. Our results strongly suggest that aspartate, internalized via the DcuA aspartate: succinate antiporting system, is then converted to fumarate and carbamoyl-aspartate, the precursor for UMP biosynthesis. Aspartate assimilation by these two pathways conferred a competitive growth advantage to EHEC in BSIC. In summary, supply of intracellular fumarate due to aspartate deamination and used as an electron acceptor for anaerobic fumarate respiration, as well as de novo synthesis of pyrimidine from aspartate appear to be important pathways favouring EHEC persistence in the bovine gut. Aspartate probably represents an ecological niche for EHEC in the bovine small intestine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.