Abstract
Objective: Our objective was to test the effects of exogenous l-aspartate and l-glutamate on myocardial energy metabolism during ischemia-reperfusion. Methods: Phosphorus 31–magnetic resonance spectroscopy was used to observe cellular energetics and intracellular pH in isolated pig hearts perfused with blood (group A, n = 8) or blood enriched with 13 mmol/L each of l-aspartate and l-glutamate (group B, n = 6). The hearts were subjected to 30 minutes of total normothermic ischemia and then reperfused for 40 minutes. Two hearts from each group were inotropically stimulated by titration with calcium after normokalemic reperfusion. Left ventricular function was measured with the use of a compliant balloon and oxygen consumption was calculated. Results: Magnetic resonance spectroscopy showed no decrease in the rate of energy decline during ischemia for group B versus group A. No significant differences were observed between the two groups in terms of myocardial function, oxygen consumption, or the rate or extent of high-energy phosphate recovery after normokalemic reperfusion or inotropic stimulation. Inotropic stimulation of postischemic hearts, however, led to dramatic improvement in myocardial function in both groups ( p < 0.05 for all parameters) and significant improvement in oxygen consumption ( p = 0.01). Conclusions: In a normal, isolated, blood-perfused pig heart subjected to 30 minutes of total normothermic ischemia, (1) enrichment of the perfusate with aspartate/glutamate before and after ischemia affects neither myocardial energy metabolism during ischemia-reperfusion nor postischemic recovery of myocardial function or oxygen consumption and (2) inotropic stimulation can recruit significant postischemic function and sufficient aerobic respiration to support it, irrespective of aspartate/glutamate enrichment. (J Thorac Cardiovasc Surg 1997;113:1068-80)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Thoracic and Cardiovascular Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.