Abstract
The Tar protein of Escherichia coli is a chemotactic signal transducer that spans the cytoplasmic membrane and mediates responses to the attractants aspartate and maltose. Aspartate binds directly to Tar, whereas maltose binds to the periplasmic maltose-binding protein, which then interacts with Tar. The Arg-64, Arg-69, and Arg-73 residues of Tar have previously been shown to be involved in aspartate sensing. When lysine residues are introduced at these positions by site-directed mutagenesis, aspartate taxis is disrupted most by substitution at position 64, and maltose taxis is disrupted most by substitution at position 73. To explore the spatial distribution of ligand recognition sites on Tar further, we performed doped-primer mutagenesis in selected regions of the tar gene. A number of mutations that interfere specifically with aspartate taxis (Asp-), maltose taxis (Mal-), or both were identified. Mutations affecting residues 64 to 73 or 149 to 154 in the periplasmic domain of Tar are associated with an Asp- phenotype, whereas mutations affecting residues 73 to 83 or 141 to 150 are associated with a Mal- phenotype. We conclude that aspartate and maltose-binding protein interact with adjacent and partially overlapping regions in the periplasmic domain of Tar to initiate attractant signalling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.