Abstract
Klotho is an anti-aging protein whose deletion significantly reduces lifespan in mice, while its over-expression increases lifespan. Klotho is a type-I transmembrane protein that is N-glycosylated at eight positions within its ectodomain. Our study demonstrates that N-glycosylation or mutation at position N614, but not at N161, N285, or N346 in mouse Klotho, is critically involved in the transport of Klotho out of the endoplasmic reticulum (ER). Consequently, while wild-type Klotho-EGFP as well as the N-glycosylation mutants N161Q, N285Q, and N346Q were present at the plasma membrane (PM), only small amounts of the N614Q Klotho-EGFP were present at the PM, with most of the protein accumulating in the ER. Protein interactome analysis of Klotho-EGFP N614Q revealed increased interactions with proteasome-related proteins and proteins involved in ER protein processing, like heat shock proteins and protein disulfide isomerases, indicative of impaired protein folding. Co-immunoprecipitation experiments confirmed the interaction of Klotho-EGFP N614Q with ER chaperons. Interestingly, despite the low amounts of Klotho-EGFP N614Q at the PM, it efficiently induced FGF receptor-mediated ERK activation in the presence of FGF23, highlighting its efficacy in triggering downstream signaling, even in limited quantities at the PM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.