Abstract

We recently identified ASP5736, (N-(diaminomethylene)-1-(3,5-difluoropyridin-4-yl)-4-fluoroisoquinoline-7-carboxamide (2E)-but-2-enedioate), a novel antagonist of 5-HT5A receptor, and here describe the in vitro and in vivo characterization of this compound. ASP5736 exhibited a high affinity for the human 5-HT5A receptor (Ki=3.6±0.66nM) and antagonized 5-carboxamidotryptamine (5-CT)-induced Ca2+ influx in human cells stably expressing the 5-HT5A receptor with approximately 200-fold selectivity over other receptors, including other 5-HT receptor subtypes, enzymes, and channels except human 5-HT2c receptor (Ki=286.8 nM) and 5-HT7 receptor (Ki=122.9 nM). Further, ASP5736 dose-dependently antagonized the 5-CT-induced decrease in cAMP levels in HEK293 cells stably expressing the 5-HT5A receptor. We then evaluated the effects of ASP5736 on cognitive impairments in several animal models of schizophrenia. Working memory deficit in MK-801-treated mice and visual learning deficit in neonatally phencyclidine (PCP)-treated mice were both ameliorated by ASP5736. In addition, ASP5736 also attenuated MK-801- and methamphetamine (MAP)-induced hyperactivity in mice without causing sedation, catalepsy, or plasma prolactin increase. The addition of olanzapine did not affect ASP5736-induced cognitive enhancement, and neither the sedative nor cataleptogenic effects of olanzapine were worsened by ASP5736. These results collectively suggest that ASP5736 is a novel and potent 5-HT5A receptor antagonist that not only ameliorates positive-like symptoms but also cognitive impairments in animal models of schizophrenia, without adverse effects. Present studies also indicate that ASP5736 holds potential to satisfy currently unmet medical needs for the treatment of schizophrenia by either mono-therapy or co-administered with commercially available antipsychotics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.