Abstract
Brain extraction (skull stripping) is a challenging problem in neuroimaging. It is due to the variability in conditions from data acquisition or abnormalities in images, making brain morphology and intensity characteristics changeable and complicated. In this paper, we propose an algorithm for skull stripping in Magnetic Resonance Imaging (MRI) scans, namely ASMCNN, by combining the Active Shape Model (ASM) and Convolutional Neural Network (CNN) for taking full of their advantages to achieve remarkable results. Instead of working with 3D structures, we process 2D image sequences in the sagittal plane. First, we divide images into different groups such that, in each group, shapes and structures of brain boundaries have similar appearances. Second, a modified version of ASM is used to detect brain boundaries by utilizing prior knowledge of each group. Finally, CNN and post-processing methods, including Conditional Random Field (CRF), Gaussian processes, and several special rules are applied to refine the segmentation contours. Experimental results show that our proposed method outperforms current state-of-the-art algorithms by a significant margin in all experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.