Abstract

Hyperactivation of Bruton's tyrosine kinase (BTK) or interleukin-2-inducible T cell kinase (ITK) has been attributed to the pathogenesis of B-cell lymphoma or T-cell leukemia, respectively, which suggests that Bruton's tyrosine kinase and interleukin-2-inducible T cell kinase are critical targets for the treatment of hematological malignancies. We identified a novel third-generation epidermal growth factor receptor (EGFR) inhibitor, ASK120067 (limertinib) in our previous research, which has been applied as a new drug application against non-small cell lung cancer in China. In this work, we found that ASK120067 displayed potent in vitro inhibitory efficacy against Bruton's tyrosine kinase protein and interleukin-2-inducible T cell kinase protein via covalent binding. In cell-based assays, ASK120067 dose-dependently suppressed Bruton's tyrosine kinase phosphorylation and exhibited anti-proliferation potency by inducing apoptosis in numerous B-lymphoma cells. Meanwhile, it caused growth arrest and induced the apoptosis of T-cell leukemia cells by attenuating interleukin-2-inducible T cell kinase activation. Oral administration of ASK120067 led to significant tumor regression in B-cell lymphoma and T-cell leukemia xenograft models by weakening Bruton's tyrosine kinase and interleukin-2-inducible T cell kinase signaling, respectively. Taken together, our studies demonstrated that ASK120067 exerted preclinical anti-tumor activities against B-/T-cell malignancy by targeting BTK/ITK.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call