Abstract

We use a set of conditional auto-regressive logit (CARL) models to predict tail probabilities for returns calculated from futures of four energy commodities. We show that CARL models are very useful to forecast the probability of tail events in energy markets and the forecasting ability of the models generally increases when commodity implied volatility is added as a predictor. We further present new bivariate models to jointly forecast the probabilities that returns from a given commodity and from the S&P 500 index are on the left tail and models for the coexceedances. We find that CARL family models have always a better forecasting performance than GARCH and Quantile-Augmented Volatility models in a univariate and multivariate setting. Conversely, when modelling coexceedances, CARL models exhibit a better predictive capacity only for Brent and heating oil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.