Abstract

Temporal dependence in workloads creates peak congestion that can make service unavailable and reduce system performance. To improve system performability under conditions of temporal dependence, a server should quickly process bursts of requests that may need large service demands. In this paper, we propose and evaluateASIdE, an Autocorrelation-based SIze Estimation, that selectively delays requests which contribute to the workload temporal dependence. ASIdE implicitly approximates the shortest job first (SJF) scheduling policy but without any prior knowledge of job service times. Extensive experiments show that (1) ASIdE achieves good service time estimates from the temporal dependence structure of the workload to implicitly approximate the behavior of SJF; and (2) ASIdE successfully counteracts peak congestion in the workload and improves system performability under a wide variety of settings. Specifically, we show that system capacity under ASIdE is largely increased compared to the first-come first-served (FCFS) scheduling policy and is highly-competitive with SJF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.