Abstract
Although tyrosine kinase inhibitors have brought significant success in the treatment of chronic myelogenous leukemia, the search for novel molecular targets for the treatmentof this disease remains relevant. Earlier, expression of acid-sensing ion channels, ASIC1a, was demonstrated in the chronic myelogenous leukemia K562 cells. Three-finger toxins from the black mamba (Dendroaspis polylepis) venom, mambalgins,have been shown to efficiently inhibit homo- and heteromeric channels containing the ASIC1a subunit; however, their use as possible antitumor agents had not been examined. In this work, using the patch-clamp technique, we detected,for the first time, an activation of ASIC1a channels in the leukemia K562 cells in response to an extracellular pH decrease. Recombinant mambalgin-2 was shown to inhibit ASIC1a activity and suppress the proliferation of the K562 cells with a half-maximaleffective concentration (EC50) ~ 0.2 M. Maximum mambalgin-2 inhibitory effect is achieved after 72 h of incubation with cells and when the pH of the cell medium reaches ~ 6.6. Inthe K562 cells, mambalgin-2 caused arrest of the cell cycle in the G1 phase and reduced the phosphorylation of G1 cell cycle phase regulators: cyclin D1 and cyclin-dependent kinase CDK4, without affecting the activity of CDK6 kinase. Thus, recombinant mambalgin-2 can be considered a prototype of a new type of drugs for the treatment of chronic myelogenous leukemia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.