Abstract

Power consumption plays a crucial role in the design of portable wireless communication devices, as it has a direct influence on the battery weight and volume required for operation. This article presents a novel design for a linear LMS equalizer for the optimization of filter order. The article describes the use of a variable length algorithm for dynamically updating the tap-length of the LMS adaptive filter to optimize the performance and for reducing the power in the adaptive filter core. An algorithm is applied to reduce and adjust the order of the filter in linear equalizer according to the channel conditions. The proposed design is implemented in the synopsis TSMC 65nm technology. The results from using the algorithm uses 28% less power when compared with the conventional 64-tap fixed length adaptive filter design. It has also been shown that the low-complexity of the additional circuitry needed for the variable length adaptive filter presents minimal overhead for this architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.