Abstract
In this paper we propose a method for pricing Asian options in market models with the risky asset dynamics driven by a Hawkes process with exponential kernel. For these processes the couple (λ(t), X(t)) is affine, this property allows to extend the general methodology introduced by Hubalek, Keller-Ressel and Sgarra for Geometric Asian option pricing to jump-diffusion models with stochastic jump intensity. Although the system of ordinary differential equations providing the characteristic function of the related affine process cannot be solved in closed form, a COS-type algorithm allows to obtain the relevant quantities needed for options valuation. We describe, by means of graphical illustrations, the dependence of Asian options prices by the main parameters of the driving Hawkes process. Finally, by using Geometric Asian options values as control variates, we show that Arithmetic Asian options prices can be computed in a fast and efficient way by a standard Monte Carlo method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.