Abstract

One method to compute the price of an arithmetic Asian option in a Lévy driven model is based on an exponential functional of the underlying Lévy process: If we know the distribution of the exponential functional, we can calculate the price of the Asian option via the inverse Laplace transform. In this paper, we consider pricing Asian options in a model driven by a general meromorphic Lévy process. We prove that the exponential functional is equal in distribution to an infinite product of independent beta random variables, and its Mellin transform can be expressed as an infinite product of gamma functions. We show that these results lead to an efficient algorithm for computing the price of the Asian option via the inverse Mellin–Laplace transform, and we compare this method with some other techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.