Abstract

The East Asian monsoons characterize the modern-day Asian climate, yet their geological history and driving mechanisms remain controversial. The southeasterly summer monsoon provides moisture, whereas the northwesterly winter monsoon sweeps up dust from the arid Asian interior to form the Chinese Loess Plateau. The onset of this loess accumulation, and therefore of the monsoons, was thought to be 8 million years ago (Ma). However, in recent years these loess records have been extended further back in time to the Eocene (56-34 Ma), a period characterized by significant changes in both the regional geography and global climate. Yet the extent to which these reconfigurations drive atmospheric circulation and whether the loess-like deposits are monsoonal remains debated. In this thesis, I study the terrestrial deposits of the Xining Basin previously identified as Eocene loess, to derive the paleoenvironmental evolution of the region and identify the geological processes that have shaped the Asian climate. I review dust deposits in the geological record and conclude that these are commonly represented by a mix of both windblown and water-laid sediments, in contrast to the pure windblown material known as loess. Yet by using a combination of quartz surface morphologies, provenance characteristics and distinguishing grain-size distributions, windblown dust can be identified and quantified in a variety of settings. This has important implications for tracking aridification and dust-fluxes throughout the geological record. Past reversals of Earth’s magnetic field are recorded in the deposits of the Xining Basin and I use these together with a dated volcanic ash layer to accurately constrain the age to the Eocene period. A combination of pollen assemblages, low dust abundances and other geochemical data indicates that the early Eocene was relatively humid suggesting an intensified summer monsoon due to the warmer greenhouse climate at this time. A subsequent shift from predominantly freshwater to salt lakes reflects a long-term aridification trend possibly driven by global cooling and the continuous uplift of the Tibetan Plateau. Superimposed on this aridification are wetter intervals reflected in more abundant lake deposits which correlate with highstands of the inland proto-Paratethys Sea. This sea covered the Eurasian continent and thereby provided additional moisture to the winter-time westerlies during the middle to late Eocene. The long-term aridification culminated in an abrupt shift at 40 Ma reflected by the onset of windblown dust, an increase in steppe-desert pollen, the occurrence of high-latitude orbital cycles and northwesterly winds identified in deflated salt deposits. Together, these indicate the onset of a Siberian high atmospheric pressure system driving the East Asian winter monsoon as well as dust storms and was triggered by a major sea retreat from the Asian interior. These results therefore show that the proto-Paratethys Sea, though less well recognized than the Tibetan Plateau and global climate, has been a major driver in setting up the modern-day climate in Asia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.