Abstract

Abstract Observations show a significant increase in Australian summer monsoon (AUSM) rainfall since the mid-twentieth century. Yet the drivers of this trend, including the role of anthropogenic aerosols, remain uncertain. We addressed this knowledge gap using historical simulations from a suite of Coupled Model Intercomparison Project phase 6 (CMIP6) models, the CESM2 Large Ensemble, and idealized single-forcing simulations from the Precipitation Driver Response Model Intercomparison Project (PDRMIP). Our results suggest that Asian anthropogenic aerosol emissions played a key role in the observed increase in AUSM rainfall from 1930 to 2014, alongside the influence of internal variability. Sulfate aerosol emissions over Asia led to regional surface cooling and strengthening of the climatological Siberian high over eastern China, which altered the meridional temperature and sea level pressure gradients across the Indian Ocean. This caused an intensification and southward shift of the Australian monsoonal westerlies (and the local Hadley cell) and resulted in a precipitation increase over northern Australia. Conversely, the influence of increased greenhouse gas concentrations on AUSM rainfall was minimal due to the compensation between thermodynamically induced wettening and transient eddy-induced drying trends. At a larger scale, aerosol and greenhouse gas forcing played a key role in the climate response over the Indo-Pacific sector and eastern equatorial Pacific, respectively (coined the “tropical Pacific east–west divide”). These findings contribute to an improved understanding of the drivers of the multidecadal trend in AUSM rainfall and highlight the need to reduce uncertainties in future projections under different aerosol emission trajectories, which is particularly important for northern Australia’s agriculture. Significance Statement Australian summer monsoon (AUSM) rainfall plays a vital role in sustaining northern Australia’s unique biodiversity and extensive agricultural industry. While observations show a significant increase in AUSM rainfall since the mid-twentieth century, the causes remain uncertain. We find that anthropogenic aerosol emissions from Asia played a key role in driving this multidecadal AUSM rainfall trend by inducing dynamic adjustments over the Indo-Pacific sector. These findings highlight the need to consider different aerosol emission trajectories when assessing future projections of AUSM rainfall.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call