Abstract
This paper is concerned with the many deep and far reaching consequences of Ash's positive solution of the type II conjecture for finite monoids. After reviewing the statement and history of the problem, we show how it can be used to decide if a finite monoid is in the variety generated by the Malcev product of a given variety and the variety of groups. Many interesting varieties of finite monoids have such a description including the variety generated by inverse monoids, orthodox monoids and solid monoids. A fascinating case is that of block groups. A block group is a monoid such that every element has at most one semigroup inverse. As a consequence of the cover conjecture — also verified by Ash — it follows that block groups are precisely the divisors of power monoids of finite groups. The proof of this last fact uses earlier results of the authors and the deepest tools and results from global semigroup theory. We next give connections with the profinite group topologies on finitely generated free monoids and free groups. In particular, we show that the type II conjecture is equivalent with two other conjectures on the structure of closed sets (one conjecture for the free monoid and another one for the free group). Now Ash's theorem implies that the two topological conjectures are true and independently, a direct proof of the topological conjecture for the free group has been recently obtained by Ribes and Zalesskii. An important consequence is that a rational subset of a finitely generated free group G is closed in the profinite topology if and only if it is a finite union of sets of the form gH1H2…Hn, where g ∈ G and each Hi is a finitely generated subgroup of G. This significantly extends classical results of M. Hall. Finally, we return to the roots of this problem and give connections with the complexity theory of finite semigroups. We show that the largest local complexity function in the sense of Rhodes and Tilson is computable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.