Abstract
Further progress in achieving the objectives of the project was made in the period of July 1 to September 30, 1997. The direct numerical simulation of particle removal process in turbulent gas flows was continued. Variations of vorticity contours which are averaged over a short time duration are studied. It is shown that the near wall vortices profoundly affect the particle removal process in turbulent boundary layer flows. The sublayer model for evaluating the particle deposition in turbulent flows was extended to include the effect of particle rebound. A new more advance flow model for the near wall vortices is also used in these analysis. Sample particle trajectories are obtained and discussed. Experimental data for transport and deposition of fibrous particles in the aerosol wind tunnel was obtained. The measured deposition velocity is compared with the empirical correlation and the available data and discussed. Particle resuspension process in turbulent flows are studied. The model is compared with the experimental data. It is shown that when the effects of the near wall flow structure, as well as the surface roughness are included the model agrees with the available experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.