Abstract

Road traffic elements are important components of roads and the main elements of structuring basic traffic geographic information databases. However, the following problems still exist in the detection and recognition of road traffic elements: dense elements, poor detection effect of multi-scale objects, and small objects being easily affected by occlusion factors. Therefore, an adaptive spatial feature fusion (ASFF) YOLOv5 network (ASFF-YOLOv5) was proposed for the automatic recognition and detection of multiple multiscale road traffic elements. First, the K-means++ algorithm was used to make clustering statistics on the range of multiscale road traffic elements, and the size of the candidate box suitable for the dataset was obtained. Then, a spatial pyramid pooling fast (SPPF) structure was used to improve the classification accuracy and speed while achieving richer feature information extraction. An ASFF strategy based on a receptive field block (RFB) was proposed to improve the feature scale invariance and enhance the detection effect of small objects. Finally, the experimental effect was evaluated by calculating the mean average precision (mAP). Experimental results showed that the mAP value of the proposed method was 93.1%, which is 19.2% higher than that of the original YOLOv5 model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.