Abstract

<p>Understanding the nature of foreshock evolution is important for earthquake nucleation and hazard evaluation. Aseismic slip and cascade triggering processes are considered to be two end-member precursors in earthquake nucleation processes. However, to perceive the physical mechanisms of these precursors leading to the occurrence of large events is challenging. In this study, the relocated 2021 Yangbi earthquake sequences are observed to be aligned along the NW-SE direction and exhibit several evident spatial migration fronts towards the hypocenters of large events including the mainshock. An apparent static Coulomb stress increase on the mainshock hypocenter was detected, owing to the precursors. This suggests that the foreshocks are manifestations of aseismic transients that promote the cascade triggering of both the foreshocks and the eventual mainshock. The temporal depth of the brittle-ductile transition exhibit deepening, followed by shallowing during the foreshock-mainshock-aftershock sequence. By jointly inverting both InSAR and GNSS data, we observe that the mainshock ruptured on a blind vertical fault with a peak slip of 0.8 m. Our results demonstrate that the lateral crustal extrusion and lower crustal flow are probably the major driving  mechanisms of mainshock. Additionally, the potential seismic hazards on the Weixi-Weishan and Red River faults deserve further attention</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call