Abstract

Gas turbine designers are increasingly using electron-beam physical vapor deposited (EB-PVD) thermal barrier coatings (TBC) to meet the challenge of higher efficiency gas turbine engine requirements. A key feature for expanding the use of TBCs is increased spallation life and reduced spallation life variability. Such a coating system comprises a substrate (Ni-based single crystal alloy), a bond coat (diffusion aluminide or MCrAlY), a ceramic (7 wt.% yttria stabilized zirconia), and a thin thermally grown oxide (TGO) between the bond coat and the ceramic. The TGO is intended to be α-alumina, but evidence reported by other researchers suggests that in some cases the as-deposited TGO may not be entirely α-alumina. The thin nature of the TGO in as-deposited TBCs (<0.5 μm) makes analysis of the phases present and morphology difficult. Advancements in transmission electron microscopy (TEM) sample preparation and photo-stimulated luminescence spectroscopy (PSLS) have allowed higher quality and easier characterization of the TGO. In this study, EB-PVD TBCs were applied to platinum–aluminide bond coats on a Ni-based superalloy. Three types of coatings were produced by changing one PVD process variable. The as-processed TGO layer was characterized utilizing scanning transmission electron microscopy (STEM) and PSLS for each of the three coating process variables used. Results of this work found that the TGO comprised two sublayers; (1) a continuous layer of γ-Al 2O 3 between the mixed oxide zone and the bond coat; and (2) a mixed oxide zone between the continuous γ-Al 2O 3 and the TBC layer. An explanation for the creation of the mixed oxide zone found in these TGO morphologies is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.