Abstract

The ironstone succession at El Gedida-Ghorabi-Naser area of El Bahariya depression is subdivided into lagoonal manganiferous mud and fossiliferous ironstone consisting mainly of hematite and goethite-hydrogoethite. The application of the ASD field spectroradiometer measurements (spectral range) in the ASTER data led to the interpretation of the presence of ferruginous units as quartzitic sandstone, gluconitic sandy clay, and pink marly limestone. The existing iron ore minerals in the iron ore localities were also classified into high Mn hematite, low Mn hematite, goethite, hydrogoethite as well as low- and high-grade Hematite and Barite. Quartz, feldspars, rutile, and clay minerals (e.g., kaolinite and illite) are mainly associated with the iron ore. Accessory minerals of manganese, e.g., psilomelane and pyrolusite, were also present. The Barite mineral is recorded as a common mineral association with the iron ore deposits at El Gedida and Ghorabi localities. The stratigraphical units investigated in the study area include the oldest gravely clayey sandstones of the Bahariya Formation overlain by the fossiliferous and oolitic limestones of the El-Hamra, Qazzun, and Naqb Formations. Quartztic sandstones and clayey sandstones of the Radwan Formation and youngest Quaternary sediments of sandy-clayey materials were often found as intermittent cover and overburden in unconformity surfaces over the iron ore bands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.