Abstract

Oral lichen planus (OLP) is a T cell-mediated autoimmune disease of oral mucosa concerning with the redox imbalance. Although glutamine uptake mediated by alanine-serine-cysteine transporter 2 (ASCT2) is critical to T cell differentiation, the exact mechanism remains ambiguous. Here, we elucidate a novel regulatory mechanism of ASCT2-mediated uptake in the differentiation and proliferation of T cells through maintaining redox balance in OLP. The results of immunohistochemistry (IHC) showed that both ASCT2 and glutaminase (GLS) were obviously upregulated compared to controls in OLP. Moreover, correlation analyses indicated that ASCT2 expression was significantly related to GLS level. Interestingly, the upregulation of glutamine metabolism in epithelial layer was consistent with that in lamina propria. Functional assays in vitro revealed the positive association between glutamine metabolism and lymphocytes infiltration. Additionally, multiplex immunohistochemistry (mIHC) uncovered a stronger colocalization among ASCT2 and CD4 and IFN-γ, which was further demonstrated by human Th1 differentiation assay in vitro. Mechanistically, targeting glutamine uptake through interference with ASCT2 using L-γ-Glutamyl-p-nitroanilide (GPNA) decreased the glutamine uptake of T cells and leaded to the accumulation of intracellular reactive oxygen species (ROS), which promoted dual specificity phosphatase 2 (DUSP2/PAC1) expression through activation of early growth response 1 (EGR1) to induce dephosphorylation of signal transducer and activator of transcription 3 (STAT3) and inhibit Th1 differentiation in turn. These results demonstrated that glutamine uptake mediated by ASCT2 induced Th1 differentiation by ROS-EGR1-PAC1 pathway, and restoring the redox dynamic balance through targeting ASCT2 may be a potential treatment for T cell-mediated autoimmune diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.