Abstract

Molecular oxygen activation by ferrous ions (Fe(II)) in aqueous solution could generate reactive oxygen species (ROS) with high oxidation potential via reaction between Fe(II) and oxygen molecules (Fe(II)/air), however, ROS yielded in the Fe(II)/air process is insufficient for removal of organic pollutants due to the irreversible ferric ions (Fe(III)) accumulation. In this study, we demonstrate that ascorbic acid (AA) could enhance ROS generation via oxygen activation by ferrous irons (AA/Fe(II)/air) and thus improve the degradation of rhodamine (RhB) significantly. It was found that the first-order aerobic degradation rate of RhB in the AA/Fe(II)/air process in the presence of ascorbic acid is more than 4 times that of the Fe(II)/Air system without adding ascorbic acid. The presence of ascorbic acid could relieve the accumulation of Fe(III) by reductive accelerating the Fe(III)/Fe(II) cycles, as well as lower the redox potential of Fe(III)/Fe(II) through chelating effect, leading to enhanced ROS generation for promoting RhB degradation. This study not only sheds light on the effect of ascorbic acid on aerobic Fe(II) oxidation, but also provides a green method for effective remediation of organic pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call