Abstract

Here we tested the hypothesis that ascorbic acid (AA) is a signaling molecule acting on stem cells via the differentiation of mesoderm derivatives, including myocytes, osteocytes, and adipocytes. Investigations used a murine embryonic stem cell line CGR8 able to differentiate into different cell types and treated or not with ascorbic acid. Differentiation was tracked mainly through cellular anatomy (including presence of beating cardiomyocytes) and expression of specific markers. The study demonstrated that AA drives mesoderm-derived stem cell differentiation toward myogenesis and osteogenesis and also inhibits adipogenesis. Further experiments found that AA competes with retinoic acid (RA) to drive cell differentiation in a dose-dependent manner: AA inhibited neurogenic differentiation and stimulated myogenesis whereas RA did the reverse. The AA-dependent differentiation of embryonic stem cells was shown to involve a p38 MAPK/CREB pathway, probably stimulated by cAMP via adenylate cyclases. In addition, SVCT2, the intracellular transporter of AA, acted as a receptor. Finally, we showed that activation/repression of specific differentiation markers is associated with epigenetic changes in their associated promoters. We discuss the impact of these findings in terms of obesity and aging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.