Abstract

Oxidative stress associated with reactive oxygen species (ROS) and cytokines produced by immune cells, which is involved in septic shock caused by endotoxin, can be controlled to a certain degree by antioxidants with free radical scavenging action. N-acetylcysteine (NAC) and ascorbic acid (AA) are ROS scavengers that improve the immune response, and modulate macrophage function in mice with endotoxin-caused oxidative stress. Therefore, we have investigated the in vitro effects of these antioxidants on the functions of lymphocytes from BALB/c mice with lethal endotoxic shock caused by intraperitoneal injection of E. coli lipopolysaccharide (LPS) (100 mg/kg). Adherence to tissues and chemotaxis (the earliest two functions of lymphocytes in the immune response), as well as ROS levels and TNFα production were determined in the presence or absence of NAC or AA (0.001, 0.01, 0.1, 1 and 2.5 mM) in lymphocytes from peritoneum, axillary nodes, spleen and thymus obtained at several times (2, 4, 12 and 24 hours) after LPS injection. Endotoxic shock decreases the chemotaxis of lymphocytes from all the above localizations and increases their adherence, TNFα and ROS production. These changes in lymphocyte function were counteracted by NAC and AA, bringing these functions to values near those of control animals. Our data suggest that lymphocytes are important targets of endotoxins contributing to oxidative stress by septic shock, and that antioxidants can preserve the function of lymphocytes, preventing the homeostatic disturbances caused by endotoxin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.