Abstract

To evaluate the influence of vitamin C on pulmonary antibacterial mechanisms, normal CD-1 mice were administered sodium ascorbate (200 mg/kg/24 h) and challenged intratracheally with type 3 Streptococcus pneumoniae. Survival rates were similar in ascorbate-treated and control animals. When infected with a high inoculum (1 X 10(6) cfu), animals given vitamin C demonstrated a significant enhancement in their capacity to clear viable pneumococci from the lungs at 24 h after challenge; the augmented pulmonary clearance was associated with an increased influx of granulocytes at 6 and 24 h. After infection with a lower inoculum (1 X 10(5) cfu), animals treated with the vitamin exhibited a significant advantage in pulmonary clearance and granulocyte recruitment but at 6 h only. After a very low inoculum challenge (1 X 10(4) cfu), the clearance of viable pneumococci was retarded in ascorbate-treated mice. In vitro, the pneumococcidal capacity of resident alveolar macrophages from animals given vitamin C was significantly reduced, but the ability of these cells to generate leukocyte chemoattractant activity after stimulation with the calcium ionophore A23187 remained unaltered. We conclude that in the mouse, large doses of vitamin C alter pulmonary defense mechanisms against S. pneumoniae; however, these changes do not appear to convey a substantial advantage to the host.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.