Abstract

Cytochrome b(561) from bovine adrenal chromaffin vesicles contains two heme B prosthetic groups and transports electron equivalents across the vesicle membranes to convert intravesicular monodehydroascorbate radical to ascorbate. We found previously that treatment of oxidized cytochrome b(561) with diethyl pyrocarbonate caused specific N-carbethoxylation of three fully conserved residues (His88, His161, and Lys85) located at the extravesicular side. The modification lead to a selective loss of the electron-accepting ability from ascorbate without affecting the electron donation to monodehydroascorbate radical [Tsubaki, M., Kobayashi, K., Ichise, T., Takeuchi, F., and Tagawa, S. (2000) Biochemistry 39, 3276-3284]. In the present study, we found that these modifications lead to a drastic decrease of the midpoint potential of heme b at the extravesicular side from +60 to -30 mV. We found further that the O-carbethoxylation of one tyrosyl residue (Tyr218) located at the extravesicular side was significantly enhanced under alkaline conditions, leading to a very slow reduction process of the oxidized heme b with ascorbate. On the other hand, the presence of ascorbate during the treatment with diethyl pyrocarbonate was found to suppress the carbethoxylation of His88, His161, and Tyr218, whereas the modification level of Lys85 was not affected. Concomitantly, the final reduction level of heme b with ascorbate was protected, although the fast reduction phase was not fully restored. These results suggest that the two heme-coordinating histidyl residues (His88 and His161) are also a part of the ascorbate binding site. Tyr218 and Lys85 may have a role in the recognition/binding process for ascorbate and are indispensable for the fast electron transfer reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.