Abstract

A cDNA clone encoding ascorbate free radical (AFR) reductase (EC 1.6.5.4) was isolated from tomato (Lycopersicon esculentum Mill.) and its mRNA levels were analyzed. The cDNA encoded a deduced protein of 433 amino acids and possessed amino acid domains characteristic of flavin adenine dinucleotide- and NAD(P)H-binding proteins but did not possess typical eukaryotic targeting sequences, suggesting that it encodes a cytosolic form of AFR reductase. Low-stringency genomic DNA gel blot analysis indicated that a single nuclear gene encoded this enzyme. Total ascorbate contents were greatest in leaves, with decreasing amounts in stems and roots and relatively constant levels in all stages of fruit. AFR reductase activity was inversely correlated with total ascorbate content, whereas the relative abundance of AFR reductase mRNA was directly correlated with enzyme activity in tissues examined. AFR reductase mRNA abundance increased dramatically in response to wounding, a treatment that is known to also induce ascorbate-dependent prolyl hydroxylation required for the accumulation of hydroxyproline-rich glycoproteins. In addition, AFR reductase may contribute to maintaining levels of ascorbic acid for protection against wound-induced free radical-mediated damage. Collectively, the results suggest that AFR reductase activity is regulated at the level of mRNA abundance by low ascorbate contents or by factors that promote ascorbate utilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.