Abstract

ABSTRACT:Diapirism has been discredited as a transport mechanism for magmas partly because diapirs seem to be unable to bring magmas to shallow crustal levels (<10km) and partly because recent developments in the theory of dyke propagation have shown that sufficiently wide dykes are able to efficiently transport felsic magmas through the crust. However, it is still unclear how felsic dykes grow to widths that allow them to propagate faster than they close by magma freezing. Ultimately, it may be the ability of felsic dykes to grow within the source that controls which mechanism dominates ascent.The ability of dykes to propagate, from the top of rising diapirs depends among other factors on the changing temperature gradient of the wall rocks. The steep gradient around rapidly rising diapirs in the low viscosity lower crust will cause dykes to freeze. As diapirs rise to colder stiffer crust and decelerate, heat diffuses further from the diapir, resulting in shallower temperature gradients that favour dyke propagation. The mechanism may thus swap, during ascent, from diapirism to dyking. Calculations of the thermal evolution of diapirs and their surroundings show that basaltic diapirs may never form because they would be drained by dykes at a very early stage; felsic diapirs may be unable to give rise to successful dykes, whereas diapirs of intermediate magmas may propagate dykes during ascent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call