Abstract

Core collapse supernovae are thought to be one of the main sources in the galaxy of elements heavier than iron. Understanding the origin of the elements is thus tightly linked to our understanding of the explosion mechanism of supernovae and supernova nucleosynthesis. X-ray and gamma-ray observations of young supernova remnants, combined with improved theoretical modeling, have resulted in enormous improvements in our knowledge of these events. The isotope Ti44 is one of the most sensitive probes of the innermost regions of the core collapse engine, and its spatial and velocity distribution are key observables. Hard x-ray imaging spectroscopy with the Nuclear Spectroscopic Telescope Array (NuSTAR) has provided new insights into the structure of the supernova remnant Cassiopeia A (Cas A), establishing the convective nature of the supernova engine. However, many questions about the details of this engine remain. We present here the concept for a balloon-borne follow-up mission called A SuperConducting ENergetic x-ray Telescope (ASCENT). ASCENT uses transition edge sensor gamma-ray microcalorimeter detectors with a demonstrated 55-eV full-width half maximum energy resolution at 97 keV. This 8- to 16-fold improvement in energy resolution over NuSTAR will allow for high-resolution imaging and spectroscopy of the Ti44 emission. This will allow for a detailed reconstruction of gamma-ray line redshifts, widths, and shapes, allowing us to address questions such as, What is the source of the neutron star kicks? What is the dominant production pathway for Ti44? Is the engine of Cas A unique?

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call