Abstract

The primary sensory trigeminal system of Python is characterized by the presence of an additional nucleus which is involved in processing data obtained by infrared sensors. This so-called lateral descending nucleus (LTTD) is strictly separated from the nuclei of the common sensory trigeminal system. The present study was undertaken in order to establish the relation between the two sensory trigeminal systems and higher brainstem structures. Further we studied whether the projections of these two systems remain separated at higher brainstem levels. It is shown that the organization of particularly the thalamus is characterized by the presence of specific projection areas of each of the two trigeminal systems: a) the ability of infrared preception is reflected particularly in the presence of an unique thalamic nucleus: the nucleus pararotundus and probably also in the enlargement of nucleus rotundus; and b) distinct subnuclei in the thalamic ventral nuclear complex are related to the various nuclei of the common sensory trigeminal system. The main ascending projection of LTTD runs via a distinct tract to the central gray layer (SGC) of the contralateral tectum mesencephali and the nucleus pararotundus (PR). Rostrally, numerous fibres decussate again via the tectal commissure and terminate ipsilaterally in the rostral part of SGC and in PR. The ascending projections of the common sensory trigeminal nuclei resemble those of mammals by gaining thalamic nuclei (ventral nuclear complex). No projections of the tectum nor to the striatum (like in birds) were observed. The two sensory trigeminal systems remain separately organised, in their projections as well as in their structure. No major connection between the two trigeminal system is present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call