Abstract

A decrease of the transient outward potassium current (Ito) has been observed in cardiac hypertrophy and contributes to the altered shape of the action potential (AP) of hypertrophied ventricular myocytes. Since the shape and duration of the ventricular AP are important determinants of the Ca2+ influx during the AP (QCa), we investigated the effect of ascending aortic stenosis (AS) on QCa in endo- and epicardial myocytes of the left ventricular free wall using the AP voltage-clamp technique. In sham-operated animals, QCa was significantly larger in endocardial compared to epicardial myocytes (803 +/- 65 fC pF(-1), n = 27 vs. 167 +/- 32 fC pF(-1), n = 38, P < 0.001). Ascending aortic stenosis significantly increased QCa in epicardial myocytes (368 +/- 54 fC pF(-1), n = 42, P < 0.05), but did not alter QCa in endocardial myocytes (696 +/- 65 fC pF(-1), n = 26). Peak and current-voltage relation of the AP-induced Ca2+ current were unaffected by AS. However, the time course of the current-voltage relation was significantly prolonged in epicardial myocytes of AS animals. Model calculations revealed that the increase in QCa can be ascribed to a prolonged opening of the activation gate, whereas an increase in inactivation prevents an excessive increase in QCa. In conclusion, AS significantly increased AP-induced Ca2+ influx in epicardial but not in endocardial myocytes of the rat left ventricle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call