Abstract

The concentration of asbestos fiber aerosols can be monitored by measuring the polarization of laser light scattered by asbestos fibers. The principle of discriminating asbestos fibers is based on the theoretically expected difference in polarization at a scattering angle of 170 deg between cylindrical and spherical airborne particles; polarization at this scattering angle should be positive for cylindrical particles such as asbestos fibers but should be negative or close to zero for spherical mineral particles. We constructed an experimental asbestos real-time monitor that uses a strong electric field to align the airborne particles, that uses lasers having linear polarization with an equal amplitude in parallel and perpendicular components to the aligned long axis of particles, and that simultaneously detects the two components of the linear polarization of light scattered at 170 deg, i.e., close to the backscatter. Experiments that were performed to detect the light scattered from airborne standard asbestos fibers showed that the measured polarization fits theoretical prediction. The concentrations of airborne asbestos fibers obtained by the asbestos real-time monitor were consistent with those estimated by the standard phase contrast microscope method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.