Abstract
Recent advances in intelligent wearable devices have brought tremendous chances for the development of healthcare monitoring system. However, the data collected by various sensors in it are user-privacy-related information. Once the individuals’ privacy is subjected to attacks, it can potentially cause serious hazards. For this reason, a feasible solution built upon the compression-encryption architecture is proposed. In this scheme, we design an Adaptive Sparse Basis Compressive Sensing (ASB-CS) model by leveraging Singular Value Decomposition (SVD) manipulation, while performing a rigorous proof of its effectiveness. Additionally, incorporating the Parametric Deformed Exponential Rectified Linear Unit (PDE-ReLU) memristor, a new fractional-order Hopfield neural network model is introduced as a pseudo-random number generator for the proposed cryptosystem, which has demonstrated superior properties in many aspects, such as hyperchaotic dynamics and multistability. To be specific, a plain medical image is subjected to the ASB-CS model and bidirectional diffusion manipulation under the guidance of the key-controlled cipher flows to yield the corresponding cipher image without visual semantic features. Ultimately, the simulation results and analysis demonstrate that the proposed scheme is capable of withstanding multiple security attacks and possesses balanced performance in terms of compressibility and robustness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.