Abstract

While there has been a tremendous interest in processing data that has an underlying graph structure, existing distributed graph processing systems take several minutes or even hours to mine simple patterns on graphs. This paper presents ASAP, a fast, approximate computation engine for graph pattern mining. ASAP leverages state-of-the-art results in graph approximation theory, and extends it to general graph patterns in distributed settings. To enable the users to navigate the tradeoff between the result accuracy and latency, we propose a novel approach to build the Error-Latency Profile (ELP) for a given computation. We have implemented ASAP on a general-purpose distributed dataflow platform and evaluated it extensively on several graph patterns. Our experimental results show that ASAP outperforms existing exact pattern mining solutions by up to 77×. Further, ASAP can scale to graphs with billions of edges without the need for large clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.