Abstract

Phase change material (PCM) is able to melt and crystalize with a high heat of phase change at constant temperature, which provides new and green cooling and heating strategies for buildings. In this work, PCMs for buildings composed of acrylonitrile‐styrene‐acrylate copolymer (ASA), polystyrene‐b‐poly(ethylene/butylene)‐b‐polystyrene triblock copolymer (SEBS) and paraffin were fabricated by melt blending. The results of the accelerated leakage test indicated an excellent ability of PCMs to keep paraffin from leakage. Thermal properties suggested that the phase change enthalpy of PCMs increased with the increasing content of paraffin and their phase change temperature was close to the comfortable sensible temperature of human body, which made it quite suitable for building cooling and heating. Besides, PCMs presented excellent stability and reusability after several thermal cycling tests. The temperature test conducted with self‐designed cylindrical devices gave a more sufficient and direct demonstration of the cooling and heating effect. Remarkably, excellent cooling and heating performance (both as high as 15°C) of the composites could be obtained with the addition of paraffin. And the time span of the cooling and heating process was as long as 5 and 7.5 hours, respectively. Owing to its excellent cooling and heating capabilities, the ASA/SEBS/paraffin composites are of great potential to be applied in building temperature control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.