Abstract
Phototheranostics is growing into a sparking frontier in disease treatment. Developing single molecular species synchronously featured by powerful absorption capacity, superior second near-infrared (NIR-II) fluorescence and prominent photothermal conversion ability is highly desirable for phototheranostics, yet remains formidably challenging. In this work, we propose a molecular design philosophy that the integration of noncovalent conformational locks (NoCLs) with aggregation-induced emission (AIE) in a single formulation is able to boost multiple photophysical properties for efficient phototheranostics. The introduction of NoCLs skeleton with conformation-locking feature in the center of molecular architecture indeed elevates the structural planarity and rigidity, which simultaneously promotes the absorption capacity and bathochromic-shifts the emission wavelength centered in NIR-II region. Meanwhile, the AIE tendency mainly originated from flexibly propeller-like geometry at the ends of molecular architecture eventually endows the molecule with satisfactory emission intensity and photothermal conversion in aggregates. Consequently, by utilizing the optimized molecule, unprecedented performance on NIR-II fluorescence-photoacoustic-photothermal trimodal imaging-guided photothermal-chemo synergistic therapy is demonstrated by the precise tumor diagnosis and complete tumor ablation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.