Abstract

In present study, Pd(0) catalysed Suzuki-Miyaura cross coupling reaction was used to synthesize 2,4-biarylphenyl-5-arylthiophene-2-carboxylate (7a–7f) and 2-aryl-4-chlorophenyl-5-arylthiophene-2-carboxylate derivatives (8a–8l) in moderate to good yields. While 2,4-dibromophenyl-5-bromothiophene-2-carboxylate (4) and 2-bromo-4-chlorophenyl-5-bromothiophene-2-carboxylate (5) were synthesized via Steglich esterification of 5-bromothiophene-2-carboxylic acid (1) with 2,4-dibromo phenol (2) and 2-bromo-4-chlorophenol (3) in the presence of N, N΄-dicyclohexylcarbodiimide (DCC) and 4-(dimethylamino)pyridine (DMAP). 1 H and 13 C NMR were used to confirm all of the compounds. To screen out the most active lead compounds, binding interactions of all synthesized compounds with MurD and MurE Escherichia coli proteins were evaluated theoretically via molecular docking studies indicating the good binding affinities. DFT calculations were performed out by using DFT-B3LYP/3-21g and structural and reactivity parameters were calculated. Compounds 5, 8b, 8e, 8h , and 8j have demonstrated potential reactivities and charge distributions that indicate their efficiency towards biological targets. These chemicals were tested in vitro for antibacterial activity against Gram-negative bacteria ( Escherichia coli ) at different concentrations based on theoretical results. The total results were quite close to the theoretical predictions and compound 8j was found to be having the greatest potential value, strongest binding affinities, and a promising antibacterial agent with MIC value of 50 mg/ml against Escherichia coli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call