Abstract

To investigate whether aryl hydrocarbon receptor (AhR) modulates cockroach allergen (CRE)-induced asthma by regulating Th17/Treg differentiation. Mouse models of CRE-induced asthma established by sensitizing and challenging the mice with CRE were randomized into asthma model group, AhR agonist group treated with TCDD (10 μg/ kg), and AhR antagonist group treated with TCDD and CH223191 (10 mg/kg) (n=5), with 5 mice without CRE challenge as the control group. The expressions of AhR, Cyp1a1 and Cyp1b1 mRNA in the lung tissues of the mice were detected using RT-PCR, and pulmonary inflammation was evaluated with immumohistochemical staining. The expressions of inflammatory cytokines in the lungs were detected using ELISA, and the expression of Treg in the lung tissues and pulmonary lymph nodes was analyzed with flow cytometry. Both TCDD and CH223191 were capable of modulating pulmonary expressions of AhR and its downstream genes Cyp1a1 and Cyp1b1 in asthmatic mice (P < 0.002). TCDD treatment significantly decreased inflammatory cells and mucus production in the lungs of asthmatic mice, and BALFs from TCDD-treated mice with CRE challenge contained lowered levels of the proinflammatory factors including IL-4, IL-13 and IL-17A (P < 0.001) but increased anti-inflammatory factors including IL-10, IL-22 and TGF-β1 (P < 0.001). All these changes were significantly reversed by treatment with CH223191 to the levels comparable with those in the asthma model group (P>0.05). More importantly, TCDD treatment significantly increased the number of Tregs cells and FOXP3 expression and lowered RORγt mRNA expression in the lungs and pulmonary lymph nodes in asthmatic mice (P < 0.001); inhibition of AhR with CH223191, as compared with TCDD, significantly decreased the expression of CD4+CD25+Foxp3+Treg cells in the lungs and pulmonary lymph nodes and the expression of FOXP3 mRNA in lymphocytes and increased RORγt mRNA expression (P < 0.001) to the levels comparable with those in asthma model group (P>0.05). AhR activation modulates airway inflammation in mice with CRE-induced asthma by modulating the differentiation of Th17/Treg.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.