Abstract

In this study, we demonstrated two deep-blue TADF emitters, BO-tCzPhICz and BO-tCzDICz, for solution-processable thermally activated delayed fluorescence organic light-emitting diodes (TADF-OLEDs). They were synthesized by employing an organoboron acceptor and 9-(3,6-di-tert-butyl-9H-carbazol-9-yl)-5-phenyl-5,12-dihydroindolo[3,2-a]carbazole (tCzPhICz) and 12-(3,6-di-tert-butyl-9H-carbazol-9-yl)-15H-diindolo[2,3-b:1',2',3'-lm]carbazole (tCzDICz) as bulky aryl-annulated [3,2-a] carbazole donors, respectively. Both emitters showed sufficient solubility in organic solvents, narrow deep-blue emission, and small energy difference (ΔEST) between singlet and triplet states, which can be applied to solution-processable deep-blue TADF-OLEDs. Solution-processed OLEDs exploiting these TADF emitters displayed deep-blue electroluminescence with CIEy <0.1, and high external quantum efficiencies of 17.8 and 14.8% were observed for BO-tCzPhICz and BO-tCzDICz, respectively. The emitter bearing bulky ICz-based donating units shows highly promising potential for high-efficiency solution-processable deep-blue TADF-OLEDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call