Abstract

Real-time six degrees-of-freedom pose estimation with ground vehicles represents a relevant and well-studied topic in robotics due to its many applications such as autonomous driving and 3D mapping. Although some systems already exist, they are either not accurate or they struggle in real-time settings. In this letter, we propose a fast, accurate and modular LiDAR SLAM system for both batch and online estimation. We first apply downsampling and outlier removal, to filter out noise and reduce the size of the input point clouds. Filtered clouds are then used for pose tracking, possibly aided by a pre-tracking module, and floor detection, to ground optimize the estimated trajectory. Efficient multi-steps loop closure and pose optimization, achieved through a g2o pose graph, are the last steps of the proposed SLAM pipeline. We compare the performance of our system with state-of-the-art point cloud-based methods, LOAM, LeGO-LOAM, A-LOAM, LeGO-LOAM-BOR, LIO-SAM and HDL, and show that the proposed system achieves equal or better accuracy and can easily handle even cases without loops. The comparison is done evaluating the estimated trajectory displacement using the KITTI (urban driving) and Chilean (underground mine) datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.