Abstract
Summary This is the first part of a two-part article formalizing existence and uniqueness of algebraic closures using the Mizar system [1], [2]. Our proof follows Artin’s classical one as presented by Lang in [3]. In this first part we prove that for a given field F there exists a field extension E such that every non-constant polynomial p ∈ F [X] has a root in E. Artin’s proof applies Kronecker’s construction to each polynomial p ∈ F [X]\F simultaneously. To do so we need the polynomial ring F [X 1, X 2, ...] with infinitely many variables, one for each polynomal p ∈ F [X]\F . The desired field extension E then is F [X 1, X 2, ...]\I, where I is a maximal ideal generated by all non-constant polynomials p ∈ F [X]. Note, that to show that I is maximal Zorn’s lemma has to be applied. In the second part this construction is iterated giving an infinite sequence of fields, whose union establishes a field extension A of F, in which every non-constant polynomial p ∈ A[X] has a root. The field of algebraic elements of A then is an algebraic closure of F . To prove uniqueness of algebraic closures, e.g. that two algebraic closures of F are isomorphic over F, the technique of extending monomorphisms is applied: a monomorphism F → A, where A is an algebraic closure of F can be extended to a monomorphism E → A, where E is any algebraic extension of F . In case that E is algebraically closed this monomorphism is an isomorphism. Note that the existence of the extended monomorphism again relies on Zorn’s lemma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.