Abstract

AbstractLet M be a finite module over a commutative noetherian ring R. For ideals a and b of R, the relations between cohomological dimensions of M with respect to a, b, a ⋂ b and a + b are studied. When R is local, it is shown that M is generalized Cohen–Macaulay if there exists an ideal a such that all local cohomology modules of M with respect to a have finite lengths. Also, when r is an integer such that 0 ≤ r < dimR(M), any maximal element q of the non-empty set of ideals ﹛a : (M) is not artinian for some i, i ≥ r} is a prime ideal, and all Bass numbers of (M) are finite for all i ≥ r.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.