Abstract

Dendritic cells (DCs) are critical to the outcome of many viral infections. Questions still remain as to the relevance of artificially generated DCs in models of in vivo immune responses. We compared different DC generation pathways, in terms of phenotypic expression, cytokine production, apoptosis, and T cell proliferation, following viral infection. Direct viral infection of monocytes or monocytes cultured with supernatants from virally infected lung epithelial cells (A549 DCs) induce distinct DC subsets compared with viral infection of artificially generated IL-4 DCs and IFN-DCs. These virally infected DC subsets stimulated different cytokine secretion profiles and displayed contrasting sensitivities to viral-induced apoptosis. It is most interesting that we observed marked differences in the proliferation of purified CD3+ T cells from the virally infected DC subsets. In conclusion, artificially generated DCs skew immune responses to viral infections, and direct viral infection of monocytes and DCs, generated from monocytes cultured with supernatants from infected epithelial cells, appears to be a more relevant pathway of producing DCs, which mimic those generated in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.