Abstract

Two-dimensional (2D) interface plays a predominate role in determining the performance of a device that is configured as a van der Waals heterostructure (vdWH). Intensive efforts have been devoted to suppressing the emergence of interfacial states during vdWH stacking process, which facilitates the charge interaction and transfer between the heterostructure layers. However, the effective generation and modulation of the vdWH interfacial states could give rise to a new design and architecture of 2D functional devices. Here, we report a 2D non-volatile vdWH memory device enabled by the artificially created interfacial states between hexagonal boron nitride (hBN) and molybdenum ditelluride (MoTe2). The memory originates from the microscopically coupled optical and electrical responses of the vdWH, with the high reliability reflected by its long data retention time over 104 s and large write-erase cyclic number exceeding 100. Moreover, the storage currents in the memory can be precisely controlled by the writing and erasing gates, demonstrating the tunability of its storage states. The vdWH memory also exhibits excellent robustness with wide temperature endurance window from 100 K to 380 K, illustrating its potential application in harsh environment. Our findings promise interfacial-states engineering as a powerful approach to realize high performance vdWH memory device, which opens up new opportunities for its application in 2D electronics and optoelectronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call