Abstract

The potential for solar ultraviolet (UV) radiation to act as a significant abiotic control of Cryptosporidium parvum oocysts in nature is unknown. Infectivity of C. parvum following exposure to artificial UV-B and natural solar radiation, with and without UV wavelengths, was tested under controlled pH and temperature conditions. Percent infectivity of exposed oocysts was determined by in vitro cell culture. Artificial UV-B exposures of 32 and 66 kJ/m2 significantly decreased oocyst infectivity by an average of 58 and 98%, respectively. Exposure of oocysts to approximately half and full intensity of full solar spectrum (all wavelengths) for a period of less than 1 day (10 h) in mid-summer reduced mean infectivity by an average of 67% and >99.99%, respectively. Exposure of the C. parvum oocysts to UV-shielded solar radiation (>404 nm) in early autumn reduced mean infectivity by 52%, while full spectrum solar radiation (exposure at all wavelengths) reduced mean infectivity by 97%. The data provide strong evidence that exposure to natural solar radiation can significantly reduce C. parvum infectivity. Direct effects of solar radiation on oocysts in nature will depend on the depth distribution of the oocysts, water transparency, mixing conditions, and perhaps other environmental factors such as temperature, pH, and stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.