Abstract
Two-dimensional symmetric and asymmetric subwavelength binary gratings are investigated. A method for determining the three effective indices of a two-dimensional (2-D) subwavelength grating is presented, as well as a theoretical formalization for the effective index parallel with the normal to the surface. It is shown that a 2-D asymmetric binary grating on the surface of a dielectric substrate is analogous to a biaxial thin film. If the grating is symmetric, then the two effective indices perpendicular to the normal are equal, and the grating is analogous to a uniaxial thin film. Using these effective indices and the quarter-wave Tschebyscheff synthesis technique, we designed two- and three-level binary gratings to suppress reflections over a broad band. It is shown that for a substrate index of ns = 3.0 a three-level 2-D binary grating reduced reflections below 0.1% from 8 μm to 12 μm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.