Abstract

Traditional tissue engineering methods often fail to promote robust cell growth and differentiation, limiting the development of functioning tissues. However, the microgravity conditions created by rotating wall vessel bioreactors minimize shear stress and unload the gravitational force usually placed on cells. In a microgravity environment, cell proliferation, cell differentiation, and the 3D organization of cells are altered, potentially encouraging the formation of more biosimilar artificial tissues for certain cell types. Additionally, cells in these engineered tissues display lowered immunogenicity, pointing to the transplantation potential of tissues engineered in microgravity conditions. However, these benefits are not consistent across all cell types, and the long-term impact of microgravity on tissue development and stability remains an unanswered question. Even so, there is potential that with further research, microgravity tissue engineering will have productive clinical applications for medical and pharmaceutical purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.